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Abstract. Approximations based on the 2PI effective action are used to investigate the process of equili-
bration in ϕ4 theory in 3+1 dimensions, both in the symmetric and broken phase. A special emphasis is
put on the study of the kinetic and chemical equilibration.
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1 Introduction

To establish the formation of a thermalized quark-gluon
plasma during a heavy-ion collision it is crucial to deter-
mine the time scales involved in the equilibration of the
initial fireball. The hydrodynamic description of the ex-
periments suggests early thermalization [1], which seems
to contradict traditional perturbative estimates [2]. The
resolution of this puzzle has spurred the development of
techniques to understand the microscopic dynamical pro-
cesses leading to equilibration.
A powerful formalism to study out-of-equilibrium dy-

namics from first principles is the 2PI effective action. It
provides an exact representation of a given theory in terms
of a functional depending solely on the connected one-
and two-point functions. Approximate equations describ-
ing the time evolution of these correlators can be derived
from a variational principle on the functional. The main
interest of the 2PI effective action as a framework to ob-
tain evolution equations is the fact that the global sym-
metries of the theory are respected [3]. In particular, the
evolution equations guarantee energy conservation, which
is an important feature when studying out-of-equilibrium
processes. They also seem to be free of the secular insta-
bilities that plague traditional perturbative approaches.
In recent years, approximations based on the 2PI ef-

fective action have been applied succesfully to the study
of far-from-equilibrium dynamics and equilibration. Most
studies have been carried out in scalar theories, both in
1+1 [4–6] and 2+1 dimensions [7], and in Yukawa theory in
3+1 dimensions [8]. The application of 2PI effective action
methods to gauge theories, however, is not straightforward
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due to a residual dependence on the choice of gauge con-
dition [9] and the difficulty of implementing properly a
numerical discretisation. In this work we extend to 3+1
dimensions previous studies of equilibration in scalar the-
ory, investigating, in addition, the behavior in the broken
phase. More information can be found in [10].

2 2PI Effective action and evolution

equations

For the scalar theory given by the action in the form

S[ϕ] =

∫
d4x

∫
d4y
1

2
ϕ(x)G−1

0
(x, y)ϕ(y)−

λ

4!
ϕ(x)4 (1)

with G−1
0
(x, y) = (−∂2x − m2)δ(x, y), the corresponding

2PI effective action is given by [11]

Γ2PI[φ,G] = S[φ]−
i

2
Tr lnG

+
i

2
Tr
[
(G−1

0
−G−1) ·G

]
+ Φ[φ,G]. (2)

Here φ and G correspond, respectively, to the full con-
nected one- and two-point correlation functions. The func-
tional Φ consists of an inifinite series of closed skeleton
diagrams

iΦ[φ,G] =
1

4
+
1

8
+
1

12

+
1

48
+ . . . , (3)

where the lines correspond to G, the crosses to φ and the
vertices to −iλ.
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Table 1. Truncations of the 2PI effective action.

Truncation iΦ[φ,G]

Hartree approximation 1

4
+ 1

8

Two-loop approximation 1

4
+ 1

8
+ 1

12

Basketball approximation 1

4
+ 1

8
+ 1

12
+ 1

48

Evolution equations for the one- and two-point func-
tions are obtained by a variational principle on the effec-
tive action Γ2PI, conveniently formulated using a real-time
contour for the time integrations. One obtains

δΓ2PI[φ,G]

δG
= 0→ δC(x, y) =

∫

C

d4z G−1
0
(x, z)G(z, y) + i

∫

C

d4z Σ(x, z)G(z, y), (4)

δΓ2PI[φ,G]

δφ
=0→

[
∂2+m2

]
φ(x)=−

λ

6
φ(x)3+

δΦ[φ,G]

δφ(x)
,

(5)
with C being the integration time contour (see, for in-
stance, [12]). The self-energy Σ(x, y) is given by

Σ(x, y) = −2
δΦ[φ,G]

δG(y, x)
. (6)

The exact evolution of φ and G would be determined by
solving these equations including the infinite series of di-
agrams in Φ[φ,G]. This is not possible to do, so one con-
siders approximate evolution equations that result from
taking only a finite set of diagrams, i.e. by truncating
Φ[φ,G] up to some order in a convenient expansion pa-
rameter. In our study we consider various truncations of
the loop expansion of Γ2PI, summarized in table 1.
In a real-scalar theory, the two-point functions defined

on the time contour C can be written in terms of two
independent components, which we take as

GC(x, y) = F (x, y)−
i

2
signC(x0 − y0)ρ(x, y). (7)

The functions F and ρ contain, respectively, statistical
and spectral information about the system. They are real
and satisfy the symmetry properties F (x, y) = F (y, x)
and ρ(x, y) = −ρ(y, x), which make them very convenient
for numerical implementation. In terms of these functions,
the evolution equations look like

[
∂2x+M

2(x)
]
F (x, y)=

∫ x0

0

dz0

∫
d3z Σρ(x, z)F (z, y)

−

∫ y0

0

dz0

∫
d3zΣF (x, z)ρ(y, z),

[
∂2x+M

2(x)
]
ρ(x, y)=

∫ x0

y0

dz0

∫
d3zΣρ(x, z)ρ(z, y),

[
∂2x+M

2(x)
]
φ(x)=

λ

3
φ(x)3 +

∫ x0

0

dz0

∫
d3zΣ̃ρ(x, z)φ(z),

(8)

whereM2(x) = m2+λ
2
φ(x)2+λ

2
F (x, x). For the Basketball

approximation, we have

ΣF (x, y) =
λ2

2
φ(x)φ(y)

[
F 2(x, y)−

ρ2(x, y)

4

]

+
λ2

6
F (x, y)

[
F 2(x, y)−

3ρ2(x, y)

4

]
,

Σρ(x, y) =λ2φ(x)φ(y)
[
F (x, y)ρ(x, y)

]
(9)

+
λ2

6
ρ(x, y)

[
3F 2(x, y)−

ρ2(x, y)

4

]
,

Σ̃ρ(x, z) =−
λ2

6
ρ(x, z)

[
3F (x, z)2 −

ρ(x, z)2

4

]
.

We see from (8) that the evolution of F , ρ and φ is deter-
mined by their values at previous times, which enter the
equation in the form of memory integrals. For the two-loop

approximation, the memory kernels are given by the first
term in the RHS of (9), while for the Hartree approxima-

tion they vanish alltogether.
To solve set of coupled evolution equations (8) we need

to specify a set of initial conditions. We consider a spa-
tially homogeneous situation so that the correlators can
be written in terms of their mode functions Fk(t, t

′) and
ρk(t, t

′). The initial conditions are then given by the val-
ues and derivatives of the mode functions F , ρ and φ at
initial time. In the case of the spectral function ρ, these
are specified by the property

ρk(t, t) = 0, ∂,ρk(t, t
′)
∣∣
t=t′

= 1. (10)

The initial conditions for F are taken of the form

Fk(t, t
′)
∣∣
t=t′=0

=
1

ωk

[
nk +

1

2

]
,

∂tFk(t, t
′)
∣∣
t=t′=0

= 0, (11)

∂t∂t′Fk(t, t
′)
∣∣
t=t′=0

= ωk

[
nk +

1

2

]
,

which are identical to the equilibrium free theory case, but
with some arbitrary distribution function nk.
The evolution equations (8) are solved numerically by

discretizing the theory on a space-time lattice with spac-
ings at ¿ a. The lattice provides a cut-off and regularizes
the ultraviolet divergences present in the continuum limit,
which are to be dealt with by renormalization. The contin-
uum renormalization of approximations based on the 2PI
effective action has been recently studied in detail (see,
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Fig. 1. Evolution in time of the occupation numbers, nk vs. ωk

(top), and dispersion relation ω2

k vs. k2 (bottom), for an ini-
tial condition with (η,k2

min,k
2

max) = (2, 2.04m2, 6.12m2) (T1).
We display the results of the Basketball (black dots) and the
Hartree approximation (grey (green on-line) dots).

for instance, [13]). For our purpose it is sufficient to use
an approximate renormalization that ensures that the rel-
evant length scales in the simulations are larger than the
lattice spacing a. For all the truncations of table 1 we take
a perturbative version of the renormalization needed just
for the Hartree case.

3 Symmetric phase

We consider first the evolution of the system in the sym-
metric phase. We initialize the system far from equilibrium
with a distribution of the form

nk = η Θ(k2max − k
2)Θ(k2 − k

2

min), (12)

which means that only modes with momenta in the range
k
2
min

< k
2 < k

2
max are occupied. In the following we shall

consider three different distributions: T1, T2 and T3, all

0 500 1000 1500 2000

mt

1

10

100

n
k

T 1

T 2

T 3

k/m = 0

Fig. 2. Evolution of individual modes for various initial con-
ditions with same energy density (T1, T2 and T3).

with identical energy and T1 and T2 with similar initial
particle number. The numerical evaluation of the evolu-
tion equations (8) is performed on a 163 spatial lattice
with spacing am = 0.7 (in units of the renormalized mass
m), time spacing atm = 0.07 and coupling λ = 61. To
monitor the evolution of the system towards equilibrium
we study the behavior of an effective quasiparticle distri-
bution function and a dispersion relation, defined as

nk(t) +
1

2
= ck

√
∂t∂t′Fk(t, t′)

∣∣
t=t′

Fk(t, t), (13)

ωp(t) =
√
∂t∂t′Fk(t, t′)

∣∣
t=t′

/Fk(t, t). (14)

The evolution of the distribution nk(t) and frequency
ωp(t) is shown in fig. 1 for the Hartree and Basketball ap-
proximations. In the Hartree case there is no inter-mode
communication (no scattering), so the system does not
equilibrate. In the Basketball case, the distribution and
dispersion relation approach equilibrium profiles around
mt ≈ 80. To find out if the system has indeed reached a
universal equilibrium state, we study the evolution of indi-
vidual modes for different initial conditions with identical
energy density (see fig. 2). One can see that the individual
modes become roughly equilibrated atmt ≈ 1000. Further
on there is practically no inter-mode communication, so it
is reasonable to say that kinetic equilibration has been es-
tablished. There is still, however, a slow drift towards the
complete equilibrium state, for which the mode distribu-
tions should agree for the various initial conditions. As one
can see in fig. 2, the evolution from the initial conditions
T1 and T3 differs substantially even at mt ∼ 2000, so the
system is still far from complete equilibrium. The reason
for the slow drift towards full equilibrium at later stages
seems to be the fact that the system is not chemically equi-
librated yet. This can be seen by plotting the evolution
of the total particle number density ntot(t) =

∫
k
nk(t),

1 The memory integrals in (8) are cut to a maximum time
extent mtcut ≈ 28. Contributions to the kernels from previous
times were checked to be negligible.
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Fig. 3. Evolution of the total particle number density ntot for
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Fig. 4. Evolution of effective mass, temperature and chemi-
cal potential (T1 case). The Hartre mass MH is included for
comparison.

as shown in fig. 3. One observes that the kinetically pre-
equilibrated state remembers the initial particle number,
and chemical equilibration occurs at a very slow rate.
Fitting the distribution nk(t) and frequency ωp(t) with

an equilibrium form we can extract an effective tempera-
ture Teff(t), chemical potential µeff(t) and mass Meff(t)
(see fig. 4). Exponential fits for the effective tempera-
ture and chemical potential indicate that final equilib-
rium is reached at mt ∼ 104−5. Comparing to the case
in 2+1 dimensions [7], chemical equilibration seems to be
much slower. The values of the effective masses seem to be
roughly the same in the Basketball and Hartree approxi-
mations (also included in fig. 4).

4 Broken phase

In the broken phase φ 6= 0 and hence one can compare the
approach to equilibrium between the two-loop and Bas-
ketball approximations. This is particularly interesting for
the two-loop case, since perturbation theory predicts no
on-shell scattering for the corresponding self-energy con-
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Fig. 5. Evolution in time of the occupation numbers, nk vs. ωk

(top), and dispersion relation ω2

k vs. k2 (bottom), for the T1
initial condition. We compare the results of the two-loop (grey
(green on-line) dots) and the Basketball approximation (black
dots).

tribution. Thus a study of the time evolution using, for
instance, Boltzmann-like equations will fail to show equi-
libration. An approach based on the 2PI effective action,
however, includes higher-order self-energy contributions
that do contain on-shell scattering. It also takes into ac-
count off-shell scattering, which can play an important
role far away from equilibrium.
The system is initialized with a distribution function

of the form (12). The mean field is taken at the tree level

vacuum expectation value φ(t = 0) = vtree =
√
6|m2|/λ.

For not so large couplings this is close to the actual varia-
tional value, so the time evolution of φ(t) should not affect
much the dynamics of the two-point functions that we use
to monitor the process of equilibration. In our simulations
we use λ = 12. The evolution of the distribution function
and dispersion relation defined according to (13) and (14)
is shown in fig. 5. Surprisingly, the process of equilibra-

2 This requires a longer memory kernel. We cut the memory
at mtcut = 84.
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Fig. 6. Evolution of total particle number density ntot for the
two-loop and Basketball approximations.

tion in the two-loop approximation seems to occur almost
as fast as in the Basketball case. The same holds for the
chemical equilibration that takes place at later stages of
the evolution, as one can see in fig. 6. As in the symmetric
case, chemical equilibration is very slow, which impedes
the approach to complete equilibrium.

5 Conclusions

In this work several truncations of the 2PI effective action
have been used to study equilibration in ϕ4 theory in 3+1
dimensions. Early in the evolution, the distribution func-
tion and dispersion relation stabilize and take equilibrium-
like forms due to a relatively fast kinetic equilibration (see
also [14]). This occurs for both the two-loop and Basket-
ball approximations, which take scattering into account.
Surprisingly, equilibration is equally rapid in both approx-
imations. An analysis of damping rates of distrubances
close to equilibrium leads to a similar conclusion [10].

The pre-equilibrated state has not completely lost the
memory of the initial state. In particular, initial condi-
tions with different total particle number pre-equilibrate
to different states. The later approach to complete equi-
librium is very slow and mainly determined by the time
scales associated with chemical equilibration.

I would like to thank J. Smit and A. Tranberg for their col-
laboration on this work and the organizers for an enjoyable
meeting. This work is supported by FOM.
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